

ECE317 : Feedback and Control

Lecture : Time response - Introduction

Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University

Course roadmap

Matlab & PECS simulations & laboratories

What's to come ...

- We will subsequently learn about system stability and how to assess and achieve it.
- Stability is a necessary requirement, but not sufficient for most control systems. (next slide)
- Specifications other than stability
 - How to evaluate a system quantitatively in *t*-domain?
 - How to give design specifications in *t*-domain?
 - What are the corresponding conditions in *s*-domain? (we will design controllers in the s-domain).

• We want to change the room temperature from 10 to 20 degree.

- We would like to analyze (stable) system's property by applying a *test input r(t)* and observing a time response *y(t)*.
- Time response is divided as

$$y(t) = y_t(t) + y_{ss}(t)$$

Transient (natural) responseSteady-state (forced) response $\lim_{t \to \infty} y_t(t) = 0$ (after yt dies out)

Ex: Transient & steady-state responses

- Transient response $y_t(t) = -0.8e^{-\frac{t}{2}}$
- Steady-state resp.

 $y_{ss}(t) = 0.8$

Usage of time responses

- Modeling
 - Some parameters in the system may be estimated by time responses.
- Analysis
 - A system can be evaluated by seeing transient and steady-state responses. (Satisfactory or not?)
- Design
 - Given design specs in terms of transient and steadystate responses, controllers are designed to satisfy all the design specs.

- Suppose that G(s) is stable.
- By the final value theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sG(s) \frac{R}{s} = RG(0)$$

• Step response converges to some finite value, called steady-state value y_{ss}

An example revisited

- For the example in Slide 6:
 - Steady-state error : 1-0.8=0.2
 - Delay time around 1.5 sec
 - Rise time around 5 sec
 - Settling time around 8 sec
- Remark: There is no peak in this case, so the following are undefined.
 - peak value
 - peak time
 - percent overshoot

Remarks on time responses

- Speed of response is measured by
 - Rise time, delay time, peak time and settling time
- Relative stability is measured by
 - Percent overshoot
- Typically
 - Fast response (short rise time, short peak time)
 - ightarrow Large percent overshoot ightarrow Small stability margin
- In controller design, we need to take trade-off between response speed and stability.

("No-free-lunch theorem" in Control Engineering)

Performance measures

Summary

- A stable system time response consists of transient and steady state components. This is also termed natural and forced responses, respectively.
- Typical test input signals: step, ramp and parabola
- Typical response specifications: e.g. percent overshoot, settling time
- Next lecture, transient response (1st and 2nd order systems)